Impact of Caffeine on Glucose Metabolism: A Review of Molecular Mechanism of Action

Authors

  • Abdullahi Adamu Ja'e Department of Human Physiology, Federal University of Lafia
  • Sadiq Muazu Maifata Faculty of Basic Medical Sciences, Federal University of Lafia. https://orcid.org/0000-0003-2963-7681
  • Kabeer Abubakar Department of Anatomy, Faculty of Basic Medical Sciences, Federal University of Lafia. https://orcid.org/0000-0001-7552-0383
  • Ahmad Muhammad Rabiu Department of Physiology, Faculty of Basic Medical Sciences, Federal University of Lafia.
  • Amina Yusuf Jega Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University Sokoto.
  • Chinedu Onwuchekwa Department of Human Physiology, College of Health Science, Usmanu Danfodiyo University Sokoto.
  • Umar Zayyanu Usman Department of Human Physiology, College of Health Science, Usmanu Danfodiyo University Sokoto.

DOI:

https://doi.org/10.71637/tnhj.v25i1.998

Keywords:

Caffeine, Glucose metabolism, insulin signaling pathway, diabetes

Abstract

Introduction: Caffeine, a widely consumed psychostimulant, is present in various foods and beverages, with its intake differing across populations. Its role in glucose metabolism remains controversial, with conflicting findings suggesting it may either raise or lower blood glucose levels. This review explores the molecular mechanisms underlying caffeine's effects on glucose metabolism. 

Methodology: A comprehensive literature search was conducted using PubMed, Scopus, Web of Science, Google Scholar, Springer, and Science Direct, focusing on studies published in English with keywords such as “Glucose metabolism OR antidiabetic AND caffeine AND molecular mechanism of action.” 

Result: Findings suggest that acute caffeine consumption may enhance insulin sensitivity by promoting glucose uptake in skeletal muscles through adenosine receptor modulation. Additionally, caffeine stimulates insulin secretion in pancreatic beta cells via the PI3K/AKT insulin signaling pathway and activates the AMP-activated protein kinase (AMPK) pathway. However, chronic caffeine intake may lead to tolerance, diminishing its insulin-sensitizing effects. Mechanisms such as stress hormone regulation, mitochondrial function, adenosine receptor blockade, and glucagon secretion could contribute to impaired glucose metabolism with prolonged caffeine use. 

Conclusion:  caffeine’s impact on glucose metabolism is complex and influenced by individual variations and consumption patterns. While acute caffeine intake may improve insulin sensitivity, long-term use may counteract these benefits, potentially leading to elevated blood glucose levels. Further research is necessary to fully elucidate the intricate relationship between caffeine and glucose metabolism.

Downloads

Download data is not yet available.

Author Biographies

  • Sadiq Muazu Maifata, Faculty of Basic Medical Sciences, Federal University of Lafia.

    Department of Human Physiology

  • Kabeer Abubakar, Department of Anatomy, Faculty of Basic Medical Sciences, Federal University of Lafia.

    Department of Human Anatomy 

  • Ahmad Muhammad Rabiu, Department of Physiology, Faculty of Basic Medical Sciences, Federal University of Lafia.

    Department of Physiology

         Abtract Views | PDF Download | EPUB Download: 2 / 1 / 0

References

1. Acheson, K. J. Caffeine and Insulin Sensitivity. Metabolic Syndrome and Related Disorders, (2005) 3(1), 19–25. https://doi.org/10.1089/met.2005.3.19

2. Ahmadvand, H., Davoodi, T., & Babaeenezha, E. Effects of Caffeic Acid on Serum Lipid Profile and Atherogenic Index in Alloxan-Induced Diabetic Rats. Herbal Medicines Journal, (2017) 1(2). https://doi.org/10.22087/hmj.v1i2.591

3. Akpomie, T. M., & Iorbee, J. I.. Determination of Caffeine Content in Two Varieties of Kola Nut and Some Tea Products Sold in Lafia, North Central Nigeria. . (2020) Number, 21(2).

4. Alfaro, T. M., Monteiro, R. A., Cunha, R. A., & Cordeiro, C. R.. Chronic coffee consumption and respiratory disease: A systematic review. The Clinical Respiratory Journal, (2018) 12(3), 1283–1294. https://doi.org/10.1111/crj.12662

5. Arnaud, M. J.. The pharmacology of caffeine. In E. Jucker & U. Meyer (Eds.), Progress in Drug Research/Fortschritte der Arzneimittelforschung/Progrès des recherches pharmaceutiques (1987) (pp. 273–313). Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9289-6_9

6. Arnaud, M. J.. Pharmacokinetics and Metabolism of Natural Methylxanthines in Animal and Man. In B. B. Fredholm, Methylxanthines (2011) (Vol. 200, pp. 33–91). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-13443-2_3

7. Baratloo, A., Rouhipour, A., Forouzanfar, M. M., Safari, S., Amiri, M., & Negida, A..

8. The Role of Caffeine in Pain Management: A Brief Literature Review. Anesthesiology and Pain Medicine, (2016) 6(3). https://doi.org/10.5812/aapm.33193

9. Barcelos, R. P., Lima, F. D., Carvalho, N. R., Bresciani, G., & Royes, L. F.. Caffeine effects on systemic metabolism, oxidative-inflammatory pathways, and exercise performance. Nutrition Research, (2020) 80, 1–17. https://doi.org/10.1016/j.nutres.2020.05.005

10. Bazzucchi, I., Felici, F., Montini, M., Figura, F., & Sacchetti, M. (2011). Caffeine improves neuromuscular function during maximal dynamic exercise. Muscle & Nerve, 43(6), 839–844. https://doi.org/10.1002/mus.21995

11. Bode, A. M., & Dong, Z.. The enigmatic effects of caffeine in cell cycle and cancer. Cancer Letters, (2007) 247(1), 26–39. https://doi.org/10.1016/j.canlet.2006.03.032

12. Boyle, N., Lawton, C., & Dye, L.. The Effects of Carbohydrates, in Isolation and Combined with Caffeine, on Cognitive Performance and Mood—Current Evidence and Future Directions. Nutrients, (2018) 10(2), 192. https://doi.org/10.3390/nu10020192

13. Bymolt, R., Laven, A., & Tyszler, M.. Demystifying the cocoa sector in Ghana and Côte d’Ivoire. Chapter 7, The importance of cocoa (2018).

14. Cappelletti, S., Daria, P., Sani, G., & Aromatario, M.. Caffeine: Cognitive and Physical Performance Enhancer or Psychoactive Drug? Current Neuropharmacology, (2015) 13(1), 71–88. https://doi.org/10.2174/1570159X13666141210215655

15. Chawla, J.. Neurologic Effects of Caffeine. https://emedicine.medscape.com/article/1182710-overview?form=fpf (2015)

16. Chirasani, V. R., Pasek, D. A., & Meissner, G.. Structural and functional interactions between the Ca2+-, ATP-, and caffeine-binding sites of skeletal muscle ryanodine receptor (RyR1). Journal of Biological Chemistry, (2021) 297(3), 101040. https://doi.org/10.1016/j.jbc.2021.101040

17. Church, T. S., Blair, S. N., Cocreham, S., Johannsen, N., Johnson, W., Kramer, K., Mikus, C. R., Myers, V., Nauta, M., Rodarte, R. Q., Sparks, L., Thompson, A., & Earnest, C. P.. Effects of Aerobic and Resistance Training on Hemoglobin A 1c Levels in Patients With Type 2 Diabetes: A Randomized Controlled Trial. JAMA, (2010) 304(20), 2253. https://doi.org/10.1001/jama.2010.1710

18. Conde, S. V., Nunes Da Silva, T., Gonzalez, C., Mota Carmo, M., Monteiro, E. C., & Guarino, M. P.. Chronic caffeine intake decreases circulating catecholamines and prevents diet-induced insulin resistance and hypertension in rats. British Journal of Nutrition, (2012) 107(1), 86–95. https://doi.org/10.1017/S0007114511002406

19. Dando, R., Dvoryanchikov, G., Pereira, E., Chaudhari, N., & Roper, S. D.. Adenosine Enhances Sweet Taste through A2B Receptors in the Taste Bud. The Journal of Neuroscience, (2012) 32(1), 322–330. https://doi.org/10.1523/JNEUROSCI.4070-11.2012

20. DeFronzo, R. A.. Overview of Newer Agents: Where Treatment Is Going. The American Journal of Medicine, (2010) 123(3), S38–S48. https://doi.org/10.1016/j.amjmed.2009.12.008

21. Derry, C. J., Derry, S., & Moore, R. A.. Caffeine as an analgesic adjuvant for acute pain in adults. In The Cochrane Collaboration (Ed.), Cochrane Database of Systematic Reviews (2011) (p. CD009281). John Wiley & Sons, Ltd. https://doi.org/10.1002/14651858.CD009281

22. Dillinger, T. L., Barriga, P., Escárcega, S., Jimenez, M., Lowe, D. S., & Grivetti, L. E.. Food of the Gods: Cure for Humanity? A Cultural History of the Medicinal and Ritual Use of Chocolate. The Journal of Nutrition, (2000) 130(8), 2057S-2072S. https://doi.org/10.1093/jn/130.8.2057S

23. Domínguez, R., Veiga-Herreros, P., Sánchez-Oliver, A. J., Montoya, J. J., Ramos-Álvarez, J. J., Miguel-Tobal, F., Lago-Rodríguez, Á., & Jodra, P.. Acute Effects of Caffeine Intake on Psychological Responses and High-Intensity Exercise Performance. International Journal of Environmental Research and Public Health, (2021) 18(2), 584. https://doi.org/10.3390/ijerph18020584

24. Drewnowski, A., & Rehm, C.. Sources of Caffeine in Diets of US Children and Adults: Trends by Beverage Type and Purchase Location. Nutrients, (2016) 8(3), 154. https://doi.org/10.3390/nu8030154

25. Echeverri, D., Montes, F. R., Cabrera, M., Galán, A., & Prieto, A.. Caffeine’s Vascular Mechanisms of Action. International Journal of Vascular Medicine, (2010), 1–10. https://doi.org/10.1155/2010/834060

26. Eichenwald, E. C., COMMITTEE ON FETUS AND NEWBORN, Watterberg, K. L., Aucott, S., Benitz, W. E., Cummings, J. J., Goldsmith, J., Poindexter, B. B., Puopolo, K., Stewart, D. L., & Wang, K. S.. Apnea of Prematurity. Pediatrics, (2016) 137(1), e20153757. https://doi.org/10.1542/peds.2015-3757

27. Faber, N. S., Häusser, J. A., & Kerr, N. L.. Sleep Deprivation Impairs and Caffeine Enhances My Performance, but Not Always Our Performance: How Acting in a Group Can Change the Effects of Impairments and Enhancements. Personality and Social Psychology Review, (2017) 21(1), 3–28. https://doi.org/10.1177/1088868315609487

28. Gallen, I. W., Lumb, A., & Carr, J.. Caffeine supplementation reduces exercise induced decline in blood glucose and subsequent hypoglycaemia in adults with type 1 diabetes (T1DM) treated with multiple daily insulin injections (MDI). https://scholar.google.com/scholar?scisbd=2&q=Gallen,+I.W.,+Chitrabhanu,+B.,+Lumb,+A.,+and+Carr,+J.+2010.+Caffeine+supplementation+reduces+exercise+induced+decline+in+blood+glucose+and+subsequent+hypoglycaemia+in+adults+with+type+1+diabetes+(T1DM)+treated+with+multiple+daily+insulin+injections+(MDI).+70th+Scientific+Sessions.+Abstract+no.:+1184-P.&hl=en&as_sdt=0,5

29. González, J., Monan, M., Perez, J., Gómez, E., Salgado, D. D. L. C., & Pérez, D.. Determination of Theobromine and Caffeine in Theobroma cacao Husk from Ethanolic Extract by GC-MS after CC Separation. OALib, (2019) 06(11), 1–9. https://doi.org/10.4236/oalib.1105771

30. Heckman, M. A., Weil, J., & De Mejia, E. G.. Caffeine (1, 3, 7‐trimethylxanthine) in Foods: A Comprehensive Review on Consumption, Functionality, Safety, and Regulatory Matters. Journal of Food Science, (2010) 75(3). https://doi.org/10.1111/j.1750-3841.2010.01561.x

31. IARC (Ed.). Coffee, tea, mate, methylxanthines and methylglyoxal. IARC. (1991)

32. Ishaq, S., & Jafri, L. Biomedical Importance of Cocoa (Theobroma cacao): Significance and Potential for the Maintenance of Human Health. Matrix Science Pharma, (2017) 1(1), 1–5. https://doi.org/10.26480/msp.01.2017.01.05

33. Institute of Medicine (US) Committee on Military Nutrition Research. Caffeine for the sustainment of mental task performance: Formulations for military operations (Chapter 2, Pharmacology of caffeine). National Academies Press (US) (2001).

34. Jacobson, K. A., & Müller, C. E.. Medicinal chemistry of adenosine, P2Y and P2X receptors. Neuropharmacology, (2016) 104, 31–49. https://doi.org/10.1016/j.neuropharm.2015.12.001

35. Karau, M., Kihunyu, J., Kathenya, N., Wangai, L., Kariuki, D., & Kibet, R.. Determination of Caffeine Content in Non-Alcoholic Beverages and Energy Drinks Using Hplc-Uv Method. African Journal of Drug and Alcohol Studies, (2010) 9(1). https://doi.org/10.4314/ajdas.v9i1.61754

36. Kaster, M. P., Machado, N. J., Silva, H. B., Nunes, A., Ardais, A. P., Santana, M., Baqi, Y., Müller, C. E., Rodrigues, A. L. S., Porciúncula, L. O., Chen, J. F., Tomé, Â. R., Agostinho, P., Canas, P. M., & Cunha, R. A.. Caffeine acts through neuronal adenosine A 2A receptors to prevent mood and memory dysfunction triggered by chronic stress. Proceedings of the National Academy of Sciences, (2015) 112(25), 7833–7838. https://doi.org/10.1073/pnas.142308811

37. Kelly, C. L., Sünram-Lea, S. I., & Crawford, T. J.. The Role of Motivation, Glucose and Self-Control in the Antisaccade Task. PLOS ONE (2015), 10(3), e0122218. https://doi.org/10.1371/journal.pone.0122218

38. Khondker, A., Dhaliwal, A., Alsop, R. J., Tang, J., Backholm, M., Shi, A.-C., & Rheinstädter, M. C.. Partitioning of caffeine in lipid bilayers reduces membrane fluidity and increases membrane thickness. Physical Chemistry Chemical Physics, (2017) 19(10), 7101–7111. https://doi.org/10.1039/C6CP08104E

39. Lane, J. D.. Caffeine, Glucose Metabolism, and Type 2 Diabetes. Journal of Caffeine Research, (2011) 1(1), 23–28. https://doi.org/10.1089/jcr.2010.0007

40. Lee, J. W., Kim, Y., Perera, V., McLachlan, A. J., & Bae, K.-S. Prediction of plasma caffeine concentrations in young adolescents following ingestion of caffeinated energy drinks: A Monte Carlo simulation. European Journal of Pediatrics, (2015) 174(12), 1671–1678. https://doi.org/10.1007/s00431-015-2581-x

41. Li, S., Dai, Z., & Wu, Q.. Effect of coffee intake on hip fracture: A meta-analysis of prospective cohort studies. Nutrition Journal, (2015) 14(1), 38. https://doi.org/10.1186/s12937-015-0025-0

42. Lipton, R. B., Diener, H.-C., Robbins, M. S., Garas, S. Y., & Patel, K.. Caffeine in the management of patients with headache. The Journal of Headache and Pain, (2017) 18(1), 107. https://doi.org/10.1186/s10194-017-0806-2

43. Lucas, M.. Coffee, Caffeine, and Risk of Depression Among Women. Archives of Internal Medicine, (2011) 171(17), 1571. https://doi.org/10.1001/archinternmed.2011.393

44. Luiz Augusto da Silva1, J. W., Vinícius Müller Reis Weber2 ,. Camila da Luz Eltchechem2 ,. Pablo de Almeida3 ,. Julio Cesar Lacerda Martins3 ,. Carlos Ricardo Maneck Malfatti2 ,. Raul Osiecki.. Mechanisms and biological effects of Caffeine on substrate metabolism homeostasis: A systematic review. Journal of Applied Pharmaceutical Science. https://doi.org/10.7324/JAPS.2017.70632

45. Musgrave, I. F., Farrington, R. L., Hoban, C., & Byard, R. W.. Caffeine toxicity in forensic practice: Possible effects and under-appreciated sources. Forensic Science, Medicine, and Pathology, (2016) 12(3), 299–303. https://doi.org/10.1007/s12024-016-9786-9

46. Nawrot, P., Jordan, S., Eastwood, J., Rotstein, J., Hugenholtz, A., & Feeley, M.. Effects of caffeine on human health. Food Additives and Contaminants, (2003) 20(1), 1–30. https://doi.org/10.1080/0265203021000007840

47. Nehlig, A. (2018). Interindividual Differences in Caffeine Metabolism and Factors Driving Caffeine Consumption. Pharmacological Reviews, (2003) 70(2), 384–411. https://doi.org/10.1124/pr.117.014407

48. O’Keefe, J. H., Bhatti, S. K., Patil, H. R., DiNicolantonio, J. J., Lucan, S. C., & Lavie, C. J.. Effects of Habitual Coffee Consumption on Cardiometabolic Disease, Cardiovascular Health, and All-Cause Mortality. Journal of the American College of Cardiology, (2013) 62(12), 1043–1051. https://doi.org/10.1016/j.jacc.2013.06.035

49. Ősz, B.-E., Jîtcă, G., Ștefănescu, R.-E., Pușcaș, A., Tero-Vescan, A., & Vari, C.-E.. Caffeine and Its Antioxidant Properties—It Is All about Dose and Source. International Journal of Molecular Sciences, (2022) 23(21), 13074. https://doi.org/10.3390/ijms232113074

50. Partosch, F., Mielke, H., Stahlmann, R., & Gundert-Remy, U.. Caffeine intake in pregnancy: Relationship between internal intake and effect on birth weight. Food and Chemical Toxicology, (2015) 86, 291–297. https://doi.org/10.1016/j.fct.2015.11.005

51. Pickering, C.. Are caffeine’s performance-enhancing effects partially driven by its bitter taste? Medical Hypotheses, (2019) 131, 109301. https://doi.org/10.1016/j.mehy.2019.109301

52. Pohanka, M., & Dobes, P. Caffeine Inhibits Acetylcholinesterase, But Not Butyrylcholinesterase. International Journal of Molecular Sciences, (2013) 14(5), 9873–9882. https://doi.org/10.3390/ijms14059873

53. Quesada, I., Todorova, M. G., Alonso-Magdalena, P., Beltrá, M., Carneiro, E. M., Martin, F., Nadal, A., & Soria, B. Glucose Induces Opposite Intracellular Ca2+ Concentration Oscillatory Patterns in Identified α- and β-Cells Within Intact Human Islets of Langerhans. Diabetes, (2006) 55(9), 2463–2469. https://doi.org/10.2337/db06-0272

54. Ren, X., & Chen, J.-F. Caffeine and Parkinson’s Disease: Multiple Benefits and Emerging Mechanisms. Frontiers in Neuroscience, (2020)14, 602697. https://doi.org/10.3389/fnins.2020.602697

55. Ribeiro, J. A., & Sebastião, A. M.. Caffeine and Adenosine. Journal of Alzheimer’s Disease, (2010) 20(s1), S3–S15. https://doi.org/10.3233/JAD-2010-1379

56. Rodak, K., Kokot, I., & Kratz, E. M.. Caffeine as a Factor Influencing the Functioning of the Human Body—Friend or Foe? Nutrients, (2021) 13(9), 3088. https://doi.org/10.3390/nu13093088

57. Sawynok, J.. Caffeine and pain. Pain, (2011) 152(4), 726–729. https://doi.org/10.1016/j.pain.2010.10.011

58. Sharma, H. A Detail Chemistry of Coffee and Its Analysis. In D. Toledo Castanheira (Ed.), Coffee—Production and Research. IntechOpen. (2020) https://doi.org/10.5772/intechopen.91725

59. Tavares, C., & Sakata, R. K.. Caffeine in the Treatment of Pain. Brazilian Journal of Anesthesiology, (2012) 62(3), 387–401. https://doi.org/10.1016/S0034-7094(12)70139-3

60. Tazzeo, T., Bates, G., Roman, H. N., Lauzon, A.-M., Khasnis, M. D., Eto, M., & Janssen, L. J.. Caffeine relaxes smooth muscle through actin depolymerization. American Journal of Physiology-Lung Cellular and Molecular Physiology, (2012) 303(4), L334–L342. https://doi.org/10.1152/ajplung.00103.2012

61. Urzúa, Z., Trujillo, X., Huerta, M., Trujillo-Hernández, B., Ríos-Silva, M., Onetti, C., Ortiz-Mesina, M., & Sánchez-Pastor, E. Effects of Chronic Caffeine Administration on Blood Glucose Levels and on Glucose Tolerance in Healthy and Diabetic Rats. Journal of International Medical Research, (2012) 40(6), 2220–2230. https://doi.org/10.1177/030006051204000620

62. Waktole Weyesa, G., & Tilahun, R. Documentation of Traditional Knowledge on “Coffee” (<i>Coffea arabica</i>) in Jimma, Ilubabor and West Wollega Zone. European Journal of Biophysics, (2021) 9(1), 1. https://doi.org/10.11648/j.ejb.20210901.11

63. Warren, G. L., Park, N. D., Maresca, R. D., Mckibans, K. I., & Millard-Stafford, M. L. Effect of Caffeine Ingestion on Muscular Strength and Endurance: A Meta-Analysis. Medicine & Science in Sports & Exercise, (2010) 42(7), 1375–1387. https://doi.org/10.1249/MSS.0b013e3181cabbd8

64. Willson, C. The clinical toxicology of caffeine: A review and case study. Toxicology Reports, (2018) 5, 1140–1152. https://doi.org/10.1016/j.toxrep.2018.11.002

65. Yasuda, N., Inoue, T., Horizoe, T., Nagata, K., Minami, H., Kawata, T., Hoshino, Y., Harada, H., Yoshikawa, S., Asano, O., Nagaoka, J., Murakami, M., Abe, S., Kobayashi, S., & Tanaka, I Functional characterization of the adenosine receptor contributing to glycogenolysis and gluconeogenesis in rat hepatocytes. European Journal of Pharmacology, (2003) 459(2–3), 159–166. https://doi.org/10.1016/S0014-2999(02)02832-7

66. Yu, N. Y., Bieder, A., Raman, A., Mileti, E., Katayama, S., Einarsdottir, E., Fredholm, B. B., Falk, A., Tapia-Páez, I., Daub, C. O., & Kere, J.. Acute doses of caffeine shift nervous system cell expression profiles toward promotion of neuronal projection growth. Scientific Reports, (2017) 7(1), 11458. https://doi.org/10.1038/s41598-017-11574-6

67. Zaharieva, D. P., & Riddell, M. C. Caffeine and glucose homeostasis during rest and exercise in diabetes mellitus. Applied Physiology, Nutrition, and Metabolism, (2013) 38(8), 813–822. https://doi.org/10.1139/apnm-2012-0471

68. ElSayed, N. A., Aleppo, G., Aroda, V. R., Bannuru, R. R., Brown, F. M., Bruemmer, D., Collins, B. S., Hilliard, M. E., Isaacs, D., Johnson, E. L., Kahan, S., Khunti, K., Leon, J., Lyons, S. K., Perry, M. L., Prahalad, P., Pratley, R. E., Seley, J. J., Stanton, R. C., Gabbay, R. A., … on behalf of the American Diabetes Association (2023). 16. Diabetes Care in the Hospital: Standards of Care in Diabetes-2023. Diabetes care, 46(Suppl 1), S267–S278. https://doi.org/10.2337/dc23-S016

Downloads

Published

2025-04-01

Issue

Section

Review Articles

How to Cite

Impact of Caffeine on Glucose Metabolism: A Review of Molecular Mechanism of Action. (2025). The Nigerian Health Journal, 25(1), 49-62. https://doi.org/10.71637/tnhj.v25i1.998

Similar Articles

1-10 of 40

You may also start an advanced similarity search for this article.