

Original

Comparative Effects of L-Carnitine and T-Bhq on Reproductive Hormone Dysregulation in Alcohol-Exposed Wistar Rats

¹*Nyakno Asuquo Godwin, ¹Polycarp Unim Adie, ¹Atim Irene Okpo-Ene, ¹Okoi Clement Okoi,
²Minafuro Chijindu Okwejie, ³John Atambell Okwejie, ¹Jessica Tochukwu Nzeadibe, ⁴Victor Antigha Essien, ⁵Exploit Ezinne Chukwuka*

¹Department of Human Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, University of Calabar, Calabar, Nigeria.

²Department of Family Medicine, Faculty of Medical Sciences, University of Calabar, Calabar, Cross River State, Nigeria.

³Department of Ophthalmology, Faculty of Clinical Sciences, University of Calabar Teaching Hospital, Calabar, Nigeria.

⁴Department of Clinical Services, Faculty of Psychiatry, Federal Neuropsychiatry Hospital, Calabar, Cross River State, Nigeria.

⁵Department of Anatomy, Faculty of Basic Medical Sciences, Alex Ekwueme Federal University, Ndofu-Alike, Ikwo, Ebonyi State, Nigeria.

Corresponding author: Exploit Ezinne Chukwuka, Department of Anatomy, Faculty of Basic Medical Sciences, Alex Ekwueme Federal University, Ndofu-Alike, Ikwo, Ebonyi State, Nigeria. exploitchukwuka@gmail.com: +2349079890752

Article history: Received 26 October 2025, Reviewed 29 November 2025, Accepted for publication 23 December 2025

ABSTRACT

Background: Reproductive dysfunction has been linked to chronic alcoholism, especially due to oxidative stress. Antioxidants like L-carnitine and tert-butylhydroquinone (tBHQ) could mitigate alcohol-induced reproductive toxicity, but their comparative effects are understudied. This study compared the effects of l-carnitine and t-BHQ on reproductive hormone dysregulation in alcohol-exposed Wistar rats.

Methodology: Thirty-five male Wistar rats were divided into seven groups (n=5): control, alcohol-only, alcohol+L-carnitine, alcohol+tBHQ, alcohol+L-carnitine+tBHQ, L-carnitine-only, and tBHQ-only. Alcohol was administered orally (2 g/kg/day), L-carnitine (100 mg/kg/day), and tBHQ (50 mg/kg/day) for 60 days. At the end of the experimental period, serum testosterone, dihydrotestosterone (DHT), 5- α reductase, luteinizing hormone (LH), and follicle-stimulating hormone (FSH) were assayed.

Results: Alcohol exposure significantly reduced testosterone (from 10.33 ng/mL in the control group to 1.12 ng/mL) while significantly increasing the levels of DHT (59.67 pg/mL to 1237.67 pg/mL), 5- α reductase (91.83 pg/mL to 698.33 pg/mL), LH (26.83 mIU/mL to 64.50 mIU/mL) and FSH (2.98 mIU/mL to 18.33 mIU/mL). L-carnitine and tBHQ independently restored testosterone to above-control levels (16.67 and 17.33 ng/mL, respectively), with their co-administration yielding much more increase. Both agents significantly reduced alcohol-induced increase in DHT and 5- α reductase, with tBHQ exerting a stronger suppressive effect. Similarly, LH and FSH concentrations were normalized toward control values following treatment.

Conclusion: Results show that L-carnitine and tBHQ mitigated hormone dysregulation in male Wistar rats caused by excessive alcohol exposure. These findings suggest that L-carnitine preserves mitochondrial integrity to sustain steroidogenesis, while tBHQ more effectively modulates enzyme activity and oxidative stress in the testes.

Keywords: Alcohol, L-carnitine and t-BHQ, testosterone and dihydrotestosterone, 5- α reductase, luteinizing hormone, follicle-stimulating hormone.

This is an open access journal and articles are distributed under the terms of the Creative Commons Attribution License (Attribution, Non-Commercial, ShareAlike" 4.0) - (CC BY-NC-SA 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.

How to cite this article

Godwin NA, Adie PU, Okpo-Ene AI, Okoi OC, Okwejie MC, Okwejie JA, Nzeadibe JT, Essien VA, Chukwuka EE. Comparative Effects of L-Carnitine and T-Bhq on Reproductive Hormone Dysregulation in Alcohol-Exposed Wistar Rats. The Nigerian Health Journal 2025; 25(4):1565 – 1572. <https://doi.org/10.71637/tnhj.v25i4.1248>

INTRODUCTION

Alcohol consumption is a global public health concern ¹⁻³ and its detrimental effects on the human body are not only limited to the central nervous system, but also spread to other organ system, including the reproductive axis. There is a substantial body of literature that chronic alcohol consumption leads to impairment of male reproductive functions ^{4,5}, which are mainly mediated through disruption of the hypothalamic-pituitary-gonadal-axis, testicular oxidative stress, and reduction in the activities of steroidogenic enzymes ^{6,7}. This leads to an endocrine imbalance that is characterized by lowered testosterone levels, irregular secretion of gonadotropin and impaired spermatogenesis, all of which cause male infertility ⁸.

The metabolic process of ethanol in the testes produces too much reactive oxygen species (ROS) ^{9, 10}. The accumulation of these ROS affects the mitochondrial functioning, destroy the Leydig and Sertoli cells, and change the expression of several important enzymes including 5- α reductase ¹¹⁻¹³. As a result, there is a decrease in the production of testosterone and an increase in its metabolism to dihydrotestosterone (DHT) resulting in an imbalance that disturbs the androgen-dependent physiological functions ^{12,14}. Also, low testosterone suppresses the negative feedback on the hypothalamus and the pituitary, thus increasing the release of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) ^{15,16}. All these hormonal derangements reflect the pathophysiological processes of alcohol-induced infertility.

Considering all these detrimental impacts, there is a growing interest in the use of antioxidants and cytoprotective compounds capable of mitigating oxidative stress and restoring reproductive functions. L-carnitine is naturally occurring quaternary ammonium derivative that is involved in the transport of fatty acids to mitochondria where they can undergo a beta oxidation ^{17, 18}. Its antioxidant qualities and its ability to preserve mitochondrial integrity make it a therapeutic option to protect Leydig cell functioning and maintain steroidogenesis during oxidative stress.

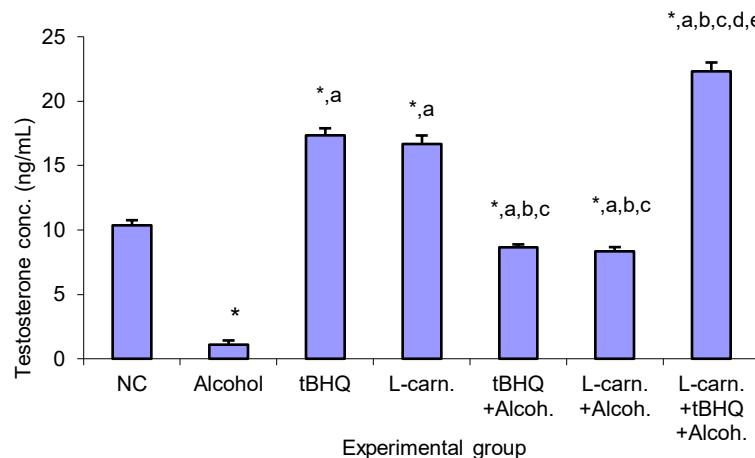
Likewise, tert-butylhydroquinone (tBHQ), which is a synthetic phenolic antioxidant commonly used as a food preservative, has been found to induce the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway, which reduces oxidative stress ^{19, 20}. In addition to its general cytoprotective ability, tBHQ has also shown activity in preserving testicular architecture, suppressing lipid peroxidation, and restoring hormonal levels during

toxic attacks ^{21, 22}. Its ability to control steroidogenic enzymes implies that it is directly involved in controlling homeostasis of reproductive hormones.

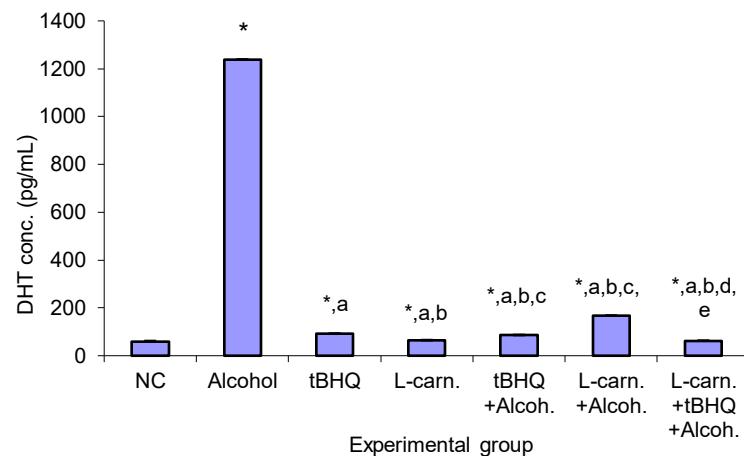
Although there are evidences on the individual protective effects of L-carnitine and tBHQ, there is little or no literatures comparing their efficacy or studying the possible synergism in the context of alcohol-induced reproductive toxicity ^{18, 20, 22}. This paper thus aims to determine and compare the influences of L-carnitine and tBHQ on the reproductive hormone imbalance in alcohol-treated male Wistar rats. This study particularly examined their effects on the concentration of serum testosterone, dihydrotestosterone (DHT), 5- α reductase, luteinizing hormone (LH), and follicle-stimulating hormone (FSH).

The outcomes of this study will contribute to a better understanding on the use of antioxidants in managing and mitigating alcohol-related male reproductive dysfunctions. This study will also provide experimental evidence for future translational studies.

RESULTS


Background characteristics of the experimental groups

The thirty-five Wistar rats that were used in this study were all similar in their baseline features prior to the commencement of alcohol, L-carnitine, or tBHQ. No significant differences ($p > 0.05$) were observed between all groups in respect of:


- i. Initial body weight
- ii. General physical activity and feeding behavior.
- iii. Hormone concentrations (testosterone, DHT, LH, FSH, and 5- α reductase) of the baselines.
- iv. Health condition and no clinical disease appearance.

Random allocation was done to maintain similar physiological conditions in each group as they commenced the experiment. Therefore, the changes observed at the end of the experiment can be attributed to the effects of the alcohol exposure or the antioxidants (L-Carnitine and tBHQ), administered, rather than to pre-treatment differences among the animals.

Testosterone and Dihydrotestosterone Concentration

A

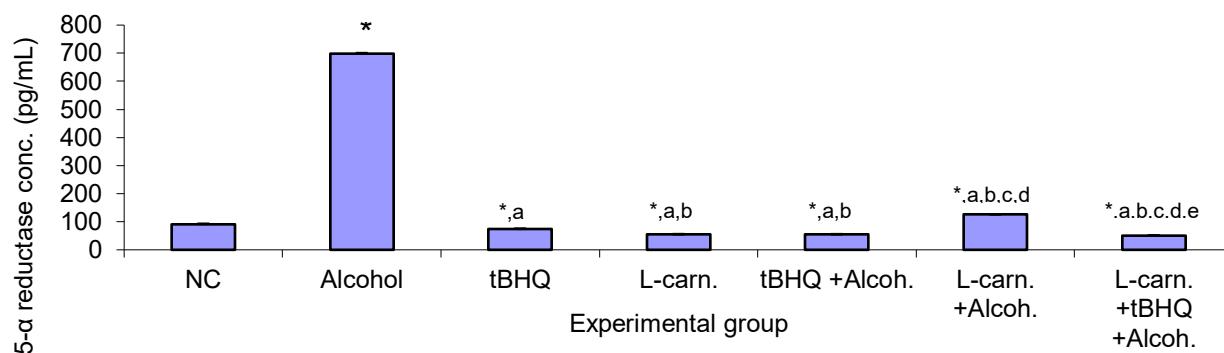
B

Figure 1: Testosterone and Dihydrotestosterone concentrations in the different experimental groups. **A.** Testosterone concentration. **B.** Dihydrotestosterone concentration.

Values are expressed as mean +SEM, n = 5.

* = p<0.05 vs control

a = p<0.05 vs alcohol


b = p<0.05 vs tBHQ

c = p<0.05 vs L-carnitine

d = p<0.05 vs tBHQ + Alcohol

e = p<0.05 vs L-carnitine + Alcohol

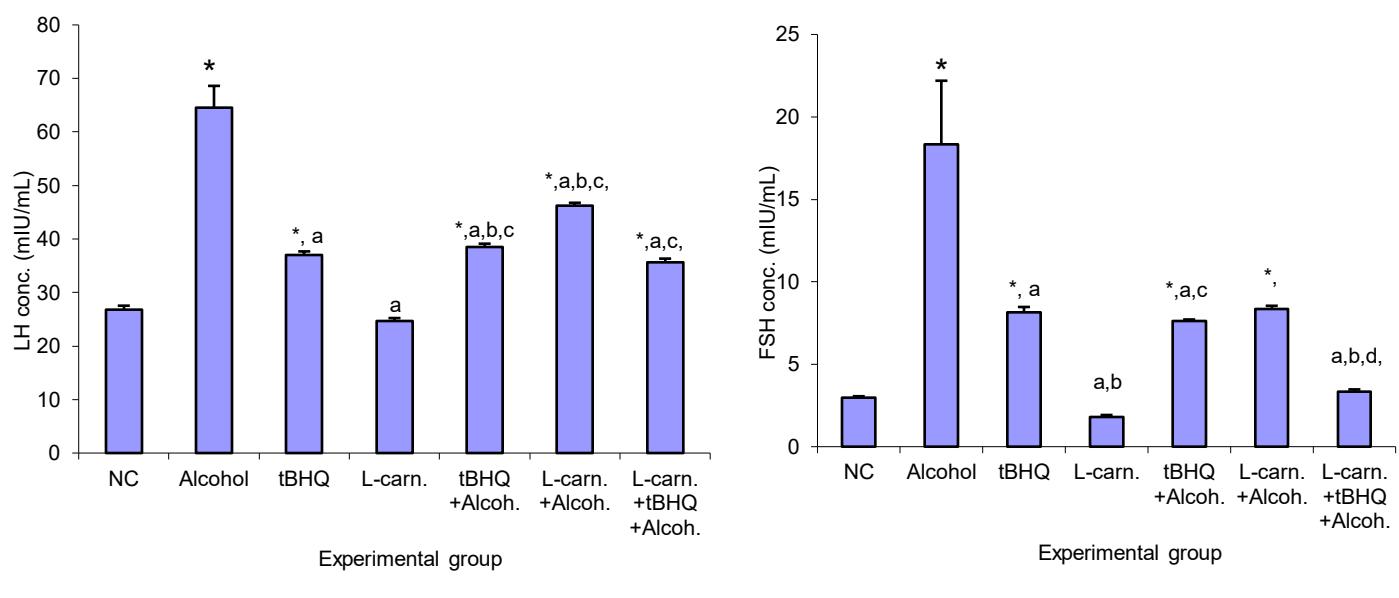
5- α Reductase Concentration

FIG. 2: 5- α reductase concentration in the different experimental groups.

Values are expressed as mean +SEM, n = 5.

* = p<0.05 vs control

a = p<0.05 vs alcohol


b = p<0.05 vs tBHQ

c = p<0.05 vs L-carnitine

d = p<0.05 vs tBHQ + Alcohol

e = p<0.05 vs L-carnitine + Alcohol

Luteinizing Hormone and Follicle Stimulating Hormone

A

B

Figure 3: Luteinizing hormone and follicle stimulating hormone concentration in the different experimental groups. A. Luteinizing hormone. B. Follicle stimulating hormone.

Values are expressed as mean +SEM, n = 5.

* = p<0.05 vs control

a = p<0.05 vs alcohol

b = p<0.05 vs tBHQ

c = p<0.05 vs L-carnitine

d = p<0.05 vs tBHQ + Alcohol

e = p<0.05 vs L-carnitine + Alcohol

DISCUSSION

In this experiment, the comparative impact of L-carnitine and tert-butylhydroquinone (tBHQ) on alcohol causing reproductive hormone imbalance in male Wistar rats was studied.

Chronic alcohol intake in this research caused a severe decrease in serum testosterone from 10.33 ng/ mL in the control group to 1.12 ng/mL in the alcohol group, as seen in FIG 1A. The result is very consistent with other studies that have reported that ethanol exposure disrupts steroidogenesis, primarily by affecting mitochondrial dysfunction and enzymatic activities disrupting steroidogenic pathways, in addition to oxidative stress ^{28, 29}. When administered individually, both L-carnitine and tBHQ supplementation increased testosterone to levels above control (16.67 and 17.33 ng/mL, respectively), and their combined administration restored testosterone to supraphysiological levels, 22.33 ng/mL. This aligns with the literatures by Koohpeyma *et al.* ²⁴, Mateus *et al.* ³⁰ and Abdel-Emam & Ahmed ³¹ that demonstrates L-carnitine boosts Leydig cell mitochondrial activity, thus maintaining the ATP production that supports steroidogenesis, in this case, the production of testosterone, under oxidative or toxic challenges. Similarly, tBHQ has also been shown to conserve testicular architecture and thus sustain production of testosterone ^{21,22}, and this is consistent with the finding that tBHQ alone elevated or maintained testosterone in damaged testes.

FIG 1B shows the concentration of dihydrotestosterone (DHT) across the experimental groups. Compared to the control group (59.67 pg/mL), there was a very significant increase in the concentration of DHT in alcohol only rats (1237.67 pg/mL). The rise could be attributed to the severe spike, nearly a seven-fold spike in of 5- α reductase activity (as shown in FIG 2) in the alcohol exposed rats (698.33 pg/mL) in comparison to the control group (91.83 pg/mL); which increases the rate of testosterone to DHT conversion ³². Comparable outcomes were recorded in the study by Rubin *et al.* ³³ and Van Thiel ³⁴, where prolonged alcohol consumption resulted to an increased metabolism of testosterone to dihydrotestosterone through the upregulation of 5 α -reductase, thus increasing the level of dihydrotestosterone in the serum.

However, single and co-administrations of tBHQ and L-carnitine with alcohol significantly ($P<0.05$) reduced the DHT concentration when compared with the alcohol-only group as observed in FIG 1B. DHT was significantly reduced in the alcohol+tBHQ than in the

alcohol+ L-carnitine groups. Also, administrations of tBHQ and L-carnitine singly to alcohol fed rats and in combination significantly ($P<0.05$) reduced the 5- α reductase concentration when compared to the groups administered only with alcohol groups ($P<0.05$). Similar to the results on DHT concentration, tBHQ demonstrated stronger suppression on 5- α reductase compared with L-carnitine. This is consistent with studies that has shown that tBHQ in particular preserve steroidogenic enzyme activity and reduce upregulated inflammatory/apoptotic signaling in the testis ^{22,25}.

FIG 3A shows the concentration of luteinizing hormone (LH) in the experimental groups. Excessive alcohol intake increased the level of LH significantly from 26.83 mIU/mL, in the control group, to 64.50 mIU/mL. This aligns with the idea of primary testicular failure where low levels of testosterone remove the negative feedback inhibition on the hypothalamic-pituitary axis, leading to an increased level of LH ³⁵. Clinical research such as studies by Thiel *et al.* ³⁶ and Castilla-García *et al.* ³⁷ have also indicated increased LH in chronic alcoholics. Conversely, other studies (38,39) involving chronic exposure to ethanol, such as acute ethanol exposure, documented LH suppression which is probably due to temporary hypothalamic suppression and not long-term failure of the testes. Therefore, our findings support the chronic alcohol approach to dysregulation of feedback.

Administrations of tBHQ and L-carnitine singly and in combination with alcohol significantly ($P<0.05$) reduced the LH concentration when compared to the alcohol group (FIG 3A); which is consistent with restored peripheral steroidogenesis ^{21,24}, thus, re-establishing negative feedback on the hypothalamic-pituitary axis. It is also noteworthy that in our dataset, LH was higher in alcohol+L-carnitine (46.17 mIU/mL) than in alcohol+tBHQ animals (38.50 mIU/mL); which also mirrors the higher decrease in the concentration of DHT and 5-a reductase in with tBHA. So, compared to L-carnitine, tBHQ is more effective in ensuring the complete normalization of testosterone production which will, in turn, lead to a stronger negative feedback effect will result in the greater suppression of LH.

Figure 3B shows the FSH concentration in the different experimental groups. There was a significant ($P<0.05$) increase in the FSH concentration in the alcohol group 18.33 mIU/mL compared to the control group 2.98 mIU/mL. This is in line with previous literatures that have reported elevated FSH when Sertoli cell function and spermatogenesis are compromised due to heavy alcohol exposure ^{23,40}. Administrations of tBHQ or L-

carnitine singly and in combination significantly ($P<0.05$) reduced the FSH concentration when compared to the alcohol groups. It was significantly lower in the alcohol+tBHQ+L-carnitine group than in the alcohol+tBHQ and the alcohol+L-carnitine groups ($P<0.05$), which means that the combined therapy provided maximal recovery.

Strength and Limitations of the Study

Strengths of the Study

Comparative and Combination Design: This research analyzed the independent and interactive effects of L-carnitine and tBHQ at the same time, which made it possible to better realize the comparative effectiveness of the two factors and the possible synergism.

Multiple Hormonal Endpoints: The experiment assessed a wide range of reproductive hormones (testosterone, DHT, LH, FSH, and 5-a reductase), which is a comprehensive measure of the functioning of the hypothalamic-pituitary-gonadal (HPG) axis.

Controlled Experimental Conditions: The animals were grouped randomly and kept in a similar environmental condition and given constant doses, which minimized bias.

Translational Relevance: The investigated mechanisms, such as oxidative stress and steroidogenesis, are closely relevant to infertility caused by alcohol in humans as well as to antioxidant therapy.

Limitations of the Study

Small Sample Size per Group (n=5): Although a small sample size is acceptable in animal studies, a bigger sample size would be more statistically powerful and generalizable.

Hormonal Analysis Only at Endpoint: Hormonal measurements were taken only after 60 days. Repeated measurements would have given information on the time and course of hormonal variation.

Single Species and Sex: This study was limited to male Wistar rats; findings might not be completely applicable to human beings and female reproduction.

Implications of the Findings of the Study

Potential Therapeutic Strategy for Alcohol-Induced Infertility: L-carnitine and tBHQ are capable of restoring testosterone, normalizing gonadotropins, and suppressing 5-a reductase, which may be useful in the treatment of alcohol-related hormonal disorders.

Public Health Education: The findings of this study highlight the need to have more intensive alcohol-use education with emphasis on reproductive health outcomes.

Recommendation in Support of the Antioxidant-Based Preventive Strategies: Public health initiatives may incorporate dietary or supplemental antioxidant strategies to mitigate alcohol-induced testicular toxicity.

CONCLUSION

In conclusion, the findings of this study indicated that chronic alcohol exposure significantly disrupted testicular steroidogenesis and pituitary-gonadal regulation, which was characterized by reduction in testosterone levels, alongside severe increase in dihydrotestosterone (DHT), 5-a reductase activity, and gonadotropins (LH and FSH). Treatment with L-carnitine and tBHQ, either singly or in combination, ameliorated these alterations, with the combined administration producing the most pronounced protective effects.

Conflict of interests: The authors declare that there is no conflicting interest in this study.

REFERENCES

1. Park SH, Kim DJ. Global and regional impacts of alcohol use on public health: Emphasis on alcohol policies. *Clinical and molecular hepatology*. 2020 Oct 1;26(4):652.
2. Mehta G, Sheron N. No safe level of alcohol consumption—Implications for global health. *Journal of hepatology*. 2019 Apr 1;70(4):587-9.
3. World Health Organization. Global status report on alcohol and health 2018. World Health Organization; 2018.
4. Genchi VA, Cignarelli A, Sansone A, Yannas D, Dalla Valentina L, Renda Livraghi D, Spaggiari G, Santi D. Understanding the role of alcohol in metabolic dysfunction and male infertility. *Metabolites*. 2024 Nov 15;14(11):626.
5. Sansone A, Di Dato C, de Angelis C, Menafra D, Pozza C, Pivonello R, Isidori A, Gianfrilli D. Smoke, alcohol and drug addiction and male fertility. *Reproductive biology and endocrinology*. 2018 Jan 15;16(1):3.
6. Rotimi DE, Acho MA, Falana BM, Olaolu TD, Mgbojikwe I, Ojo OA, Adeyemi OS. Oxidative stress-induced hormonal disruption in male reproduction. *Reproductive Sciences*. 2024 Oct;31(10):2943-56.
7. Rachdaoui N, Sarkar DK. Pathophysiology of the effects of alcohol abuse on the endocrine system. *Alcohol research: current reviews*. 2017;38(2):255.
8. Duca Y, Aversa A, Condorelli RA, Calogero AE, La Vignera S. Substance abuse and male hypogonadism. *Journal of clinical medicine*. 2019 May 22;8(5):732.

9. Siervo GE, Vieira HR, Ogo FM, Fernandez CD, Gonçalves GD, Mesquita SF, Anselmo-Franci JA, Cecchini R, Guarner FA, Fernandes GS. Spermatic and testicular damages in rats exposed to ethanol: influence of lipid peroxidation but not testosterone. *Toxicology*. 2015 Apr 1;330:1-8.
10. Darbandi M, Darbandi S, Agarwal A, Sengupta P, Durairajayagam D, Henkel R, Sadeghi MR. Reactive oxygen species and male reproductive hormones. *Reproductive Biology and Endocrinology*. 2018 Sep 11;16(1):87.
11. Monageng E, Offor U, Takalani NB, Mohlala K, Opuwari CS. A review on the impact of oxidative stress and medicinal plants on Leydig cells. *Antioxidants*. 2023 Aug 4;12(8):1559.
12. Chimento A, De Luca A, Venditti M, De Amicis F, Pezzi V. Beneficial Effects of Resveratrol on Testicular Functions: Focus on Its Antioxidant Properties. *Cells*. 2025 Jul 21;14(14):1122.
13. Ketchem JM, Bowman EJ, Isales CM. Male sex hormones, aging, and inflammation. *Biogerontology*. 2023 Feb;24(1):1-25.
14. Das PK, Mukherjee J, Banerjee D. Functional morphology of the male reproductive system. In *Textbook of veterinary physiology* 2023 Sep 1 (pp. 441-476). Singapore: Springer Nature Singapore.
15. Oduwole OO, Huhtaniemi IT, Misrahi M. The roles of luteinizing hormone, follicle-stimulating hormone and testosterone in spermatogenesis and folliculogenesis revisited. *International journal of molecular sciences*. 2021 Nov 25;22(23):12735.
16. Cohen J, Nassau DE, Patel P, Ramasamy R. Low testosterone in adolescents & young adults. *Frontiers in endocrinology*. 2020 Jan 10;10:916.
17. Virmani MA, Cirulli M. The role of l-carnitine in mitochondria, prevention of metabolic inflexibility and disease initiation. *International journal of molecular sciences*. 2022 Feb 28;23(5):2717.
18. Roseiro LC, Santos C. Carnitines (including l-carnitine, acetyl-carnitine, and propionyl-carnitine). In *Nonvitamin and nonmineral nutritional supplements* 2019 Jan 1 (pp. 45-52). Academic Press.
19. Liu X, Yang L, Zhang G, Ling J. Neuroprotective effects of phenolic antioxidant tert-butylhydroquinone (tBHQ) in brain diseases. *Molecular Neurobiology*. 2023 Sep;60(9):4909-23.
20. Khezerlou A, pouya Akhlaghi A, Alizadeh AM, Dehghan P, Maleki P. Alarming impact of the excessive use of tert-butylhydroquinone in food products: A narrative review. *Toxicology reports*. 2022 Jan 1;9:1066-75.
21. Nna VU, Ujah GA, Suleiman JB, Mohamed M, Nwokocha C, Akpan TJ, Ekuma HC, Fubara VV, Kekung-Asu CB, Osim EE. Tert-butylhydroquinone preserve testicular steroidogenesis and spermatogenesis in cisplatin-intoxicated rats by targeting oxidative stress, inflammation and apoptosis. *Toxicology*. 2020 Aug 1;441:152528.
22. Ujah GA, Nna VU, Suleiman JB, Eleazu C, Nwokocha C, Rebene JA, Imowo MU, Obi EO, Amachree C, Udechukwu EC, Mohamed M. Tert-butylhydroquinone attenuates doxorubicin-induced dysregulation of testicular cytoprotective and steroidogenic genes and improves spermatogenesis in rats. *Scientific Reports*. 2021 Mar 9;11(1):5522.
23. Oremosu AA, Akang EN. Impact of alcohol on male reproductive hormones, oxidative stress and semen parameters in Sprague–Dawley rats. *Middle East Fertility Society Journal*. 2015 Jun 1;20(2):114-8.
24. Koohpeyma F, Gholizadeh F, Hafezi H, Hajiaghayi M, Siri M, Allahyari S, Maleki MH, Asmari N, Bayat E, Dastghaib S. The protective effect of L-carnitine on testosterone synthesis pathway, and spermatogenesis in monosodium glutamate-induced rats. *BMC complementary medicine and therapies*. 2022 Oct 13;22(1):269.
25. Chen Y, Zhang X, Lan S, Liang S, Zhang M, Zhang S, Liu Y, Li L, Wei H, Zhang S. Tert-Butylhydroquinone Mitigates T-2-Toxin-Induced Testicular Dysfunction by Targeting Oxidative Stress, Inflammation, and Apoptosis in Rats. *Toxics*. 2024 May 5;12(5):335.
26. ELK Biotechnology. Testo (Testosterone) ELISA Kit. www.elkbiotech.com/upload/file/ELISA/ELK10254-1.pdf
27. Eagle Biosciences, Inc. Dihydrotestosterone (DHT) ELISA Assay Kit. <https://eaglebio.com/wp-content/uploads/data-pdf/dht31-dht-elisa-assay-kit-packageinsert.pdf>
28. Santucci L, Graham TJ, MD DH. Inhibition of testosterone production by rat Leydig cells with ethanol and acetaldehyde: prevention of ethanol toxicity with 4-methylpyrazole. *Alcoholism: Clinical and Experimental Research*. 1983 Mar;7(2):135-9.
29. Smith SJ, Lopresti AL, Fairchild TJ. The effects of alcohol on testosterone synthesis in men: a review. *Expert review of endocrinology & metabolism*. 2023 Mar 4;18(2):155-66.
30. Mateus FG, Moreira S, Martins AD, Oliveira PF, Alves MG, Pereira MD. L-carnitine and male fertility: is supplementation beneficial? *Journal of Clinical Medicine*. 2023 Sep 6;12(18):5796.
31. Abdel-Emam RA, Ahmed EA. Ameliorative effect of L-carnitine on chronic lead-induced reproductive

toxicity in male rats. *Veterinary medicine and science*. 2021 Jul;7(4):1426-35.

32. Fajardo A. Novel mechanisms of androgen receptor degradation by alpha-tocopherylquinone and curcumin analog 27.

33. Rubin E, Lieber CS, Altman K, Gordon GG, Southren AL. Prolonged ethanol consumption increases testosterone metabolism in the liver. *Science*. 1976 Feb 13;191(4227):563-4.

34. Van Thiel DH. Ethyl alcohol and gonadal function. *Hospital Practice*. 1984 Nov 1;19(11):152-8.

35. Shimon I, Lubina A, Gorfine M, Ilany J. Feedback inhibition of gonadotropins by testosterone in men with hypogonadotropic hypogonadism: comparison to the intact pituitary-testicular axis in primary hypogonadism. *Journal of andrology*. 2006 May 6;27(3):358-64.

36. Thiel D, Lester R, Vaitukaitis J. Evidence for a defect in pituitary secretion of luteinizing hormone in chronic alcoholic men. *The Journal of Clinical Endocrinology & Metabolism*. 1978 Sep 1;47(3):499-507.

37. Castilla-García A, Santolaria-Fernández FJ, González-Reimers CE, Batista-López N, González-García C, Jorge-Hernández J, Hernández-nieto L. Alcohol-induced hypogonadism: reversal after ethanol withdrawal. *Drug and alcohol dependence*. 1987 Nov 30;20(3):255-60.

38. Salonen I, Huhtaniemi I. Effects of chronic ethanol diet on pituitary-testicular function of the rat. *Biology of reproduction*. 1990 Jan 1;42(1):55-62.

39. Ogilvie KM, Rivier C. Effect of alcohol on the proestrous surge of luteinizing hormone (LH) and the activation of LH-releasing hormone (LHRH) neurons in the female rat. *Journal of Neuroscience*. 1997 Apr 1;17(7):2595-604.

40. Finelli R, Mottola F, Agarwal A. Impact of alcohol consumption on male fertility potential: a narrative review. *International journal of environmental research and public health*. 2021 Dec 29;19(1):328.